Luis Villegas-Aguilar

SCREAM & QUANIUM) SHOUT

(or how to amplify more than a single photon)

people are LOUD

people like LOUD

people also like QUANTUM

but being QUANTUM LOUD is hard

it's easy to be loud classically...

due to a little "no-cloning" thing called

you can do it PERFECTY

...sometimes

oiseless inear **Amplification**

$$c_0 | \rangle + c_1 | \rangle + c_2 | \rangle + c_3 | \rangle + c_4 | \rangle$$

$$c_0 | \downarrow \rangle + g c_1 | \downarrow \rangle + g^2 c_2 | \downarrow \rangle + g^3 c_3 | \downarrow \rangle + g^4 c_4 | \downarrow \rangle$$

how does it work?

Quantum Fourier Transform

different detector clicks = extra phase

 $|g\psi_2\rangle$

$$e^{i\pi/3}|g\psi_2\rangle$$

$$e^{2i\pi/3}|g\psi_2\rangle$$

how do we test it?

here's some numbers:

starting from $|\psi\rangle=|2
angle$

$$|\psi\rangle = |2\rangle$$

$$\sigma = 0.1$$
90:10 split

amplitude gain

$$g=3$$

intensity gain

$$|g^2|^2 = g^4 = 81$$

we can also measure the gain directly

$$|\psi\rangle \xrightarrow{\mathrm{BS}(\tau)} \rho$$

$$\rho_{22}^{\mathrm{in}} \propto \tau^{2}|2\rangle\langle 2|$$

$$|\psi\rangle \xrightarrow{\mathrm{BS}(\tau)} \rho$$

$$\rho_{22}^{\mathrm{in}} \propto \tau^{2} |2\rangle\langle 2|$$

$$\rho_{22}^{\mathrm{out}} \propto 8^{4} \tau^{2} |2\rangle\langle 2|$$

$\frac{\rho_{22}^{\text{out}}}{\rho_{22}^{\text{in}}} = g^4$

$\frac{\rho_{22}^{\text{out}}}{\rho_{22}^{\text{in}}} = g^4$

pretty LOUD

to conclude:

communication *needs* amplification

amplifying more than one photon has been very difficult until now

